Predict gene knockout strategies

In cameo we have two ways of predicting gene knockout targets: using evolutionary algorithms (OptGene) or linear programming (OptKnock)

If you’re running this notebook on try.cameo.bio, things might run very slow due to our inability to provide access to the proprietary CPLEX solver on a public webserver. Furthermore, Jupyter kernels might crash and restart due to memory limitations on the server.

from cameo import models
model = models.bigg.iJO1366
wt_solution = model.solve()
growth = wt_solution.fluxes["BIOMASS_Ec_iJO1366_core_53p95M"]
acetate_production = wt_solution.fluxes["EX_ac_e"]
from cameo import phenotypic_phase_plane
p = phenotypic_phase_plane(model, variables=['BIOMASS_Ec_iJO1366_core_53p95M'], objective='EX_ac_e')
p.plot(points=[(growth, acetate_production)])